

Когенерационные солнечные электротепловые станции

Проект получил одобрение фонда Solar Impulse, Швейцария в качестве одного из 1000 лучших решений для защиты окружающей среды

Александр Худыш Рязань, 2020

Рынок солнечной энергетики

Мировой рынок введённых в эксплуатацию солнечных установок:

2017 г. – 98,5 ГВт

2018 г. – 102,4 ГВт

2019 г. – 125 ГВт – средний прогноз международной ассоциации SolarPower Europe, в том числе:

- Китай − 35 ГВт,
- США 12 ГВт,
- Европа 16 ГВт.

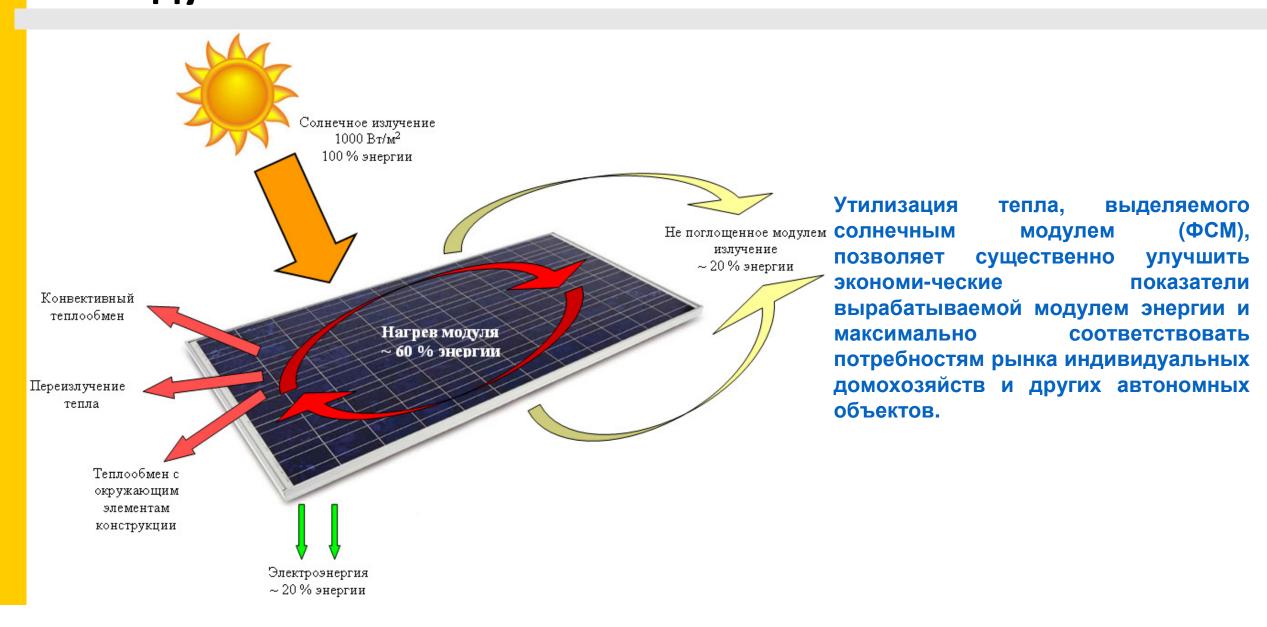
Российский рынок введённых в эксплуатацию солнечных установок:

2017 г. – 90 МВт

2018 г. – 300 МВт

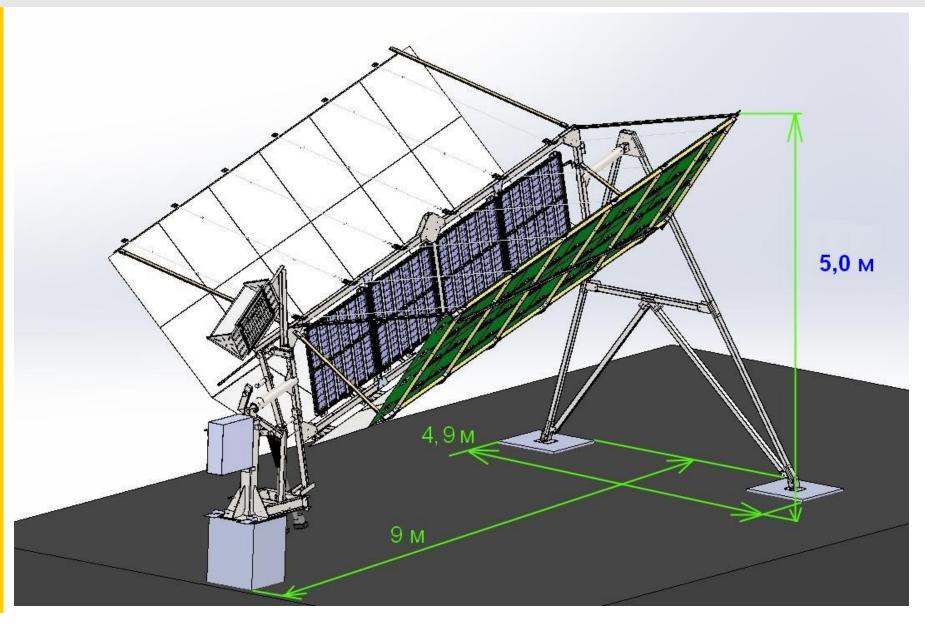
2019 г. – 420 МВт (прогноз на ноябрь 2019 года)

Общая ёмкость рынка к 2023 году оценивается в 2500 МВт, в том числе:


- сетевые станции 2000 МВт;
- домохозяйства, отдельно стоящие объекты 500 МВт.

Технологии в производстве PV модулей в 2019 году

Баланс мощности в кристаллическом солнечном модуле


Сравнительная эффективность использования солнечных элементов в СЭУ

Тип установки	СЭУ2/5ТДК	СЭУ компании Cogenra Solar (SunPower), США	СЭУ компаний Airlight Energy,Швейцария и IBM, США
Тип солнечного фотоэлектрического элемента (СФЭ)	Двухсторонние на кристаллическом кремнии	Односторонние на кристаллическом кремнии	Элементы группы A_3B_5
Размер СФЭ, мм х мм	52 x 156	52 x 156	10 x 10
КПД СФЭ по суммарной (электрической и тепловой) пиковой мощности, %	70	57	80
Система слежения за положением солнца	В полярных координатах. Увеличение мощности за счет слежения на 28%.	По одной оси. Увеличение мощности за счет слежения на 20%.	По двум осям. Увеличение мощности за счет слежения на 32%.

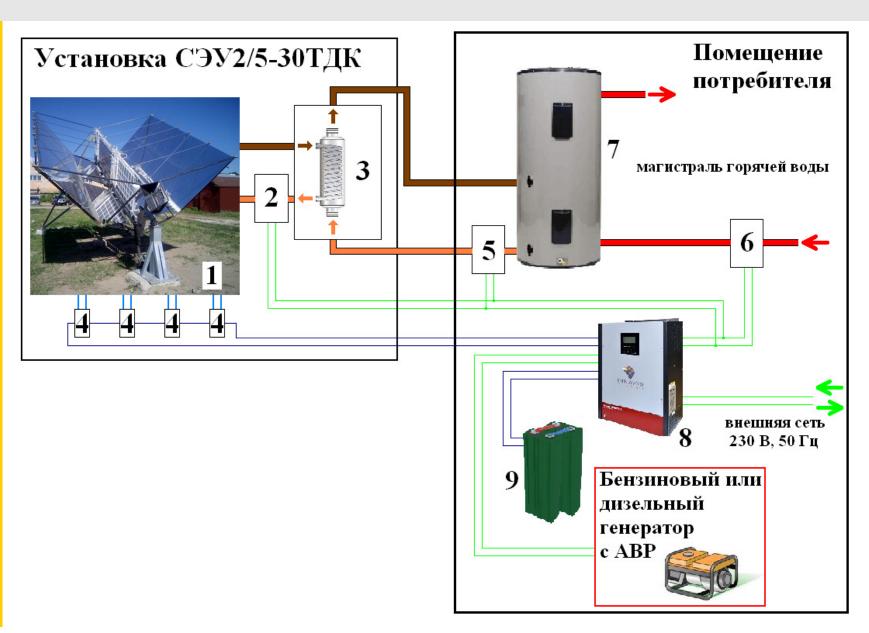
КПД СФЭ по суммарной пиковой мощности 70%, достигаемый в СЭУ2/5ТДК, является самым высоким показателем в мире для кремниевого солнечного элемента. СФЭ в пересчете на стандартный размер 156 х 156 мм в установке вырабатывает около 14 Вт электрической и 36 Вт тепловой мощности — всего 50 Вт с одного СФЭ.

Когенерационная солнечная установка СЭУ2/5ТДК

Установка размещена под углом 15° к горизонту

Технические характеристики СЭУ2/5ТДК

Параметр	Значение	
Электрическая пиковая мощность СЭУ, не менее, Вт	2000*	
Тепловая пиковая мощность СЭУ, Вт	5300	
Суммарная пиковая мощность СЭУ, Вт	7300*	
Максимальное собственное потребление электроэнергии, не более, Вт	100	
Выходное напряжение DC, В	310±8	
Количество двухсторонних солнечных модулей в СЭУ, шт.	4	
Размеры двухсторонних модулей, мм	1200 x 1200 x 60	
Температура охлаждающей жидкости на выходе из теплообменника СЭУ выбирается пот °C	35 - 70	
Максимальная температура охлаждающей жидкости от потребителя на входе теплообменника СЭУ, °С		
Угол наклона по азимуту (варианты), градусов	7, 15, 30	
Максимальный угол слежения за солнцем от вертикали, не менее, градусов	± 60	
Диапазон рабочих температур окружающей среды, °С	-40 +55	
Максимальная скорость 3-х секундного порыва ветра, не более, км/ч	140	
Вес СЭУ без фундаментных опор, не более, кг	1500	
	7	8,0 x 4,9 x 4,0
Габариты размещения при угле наклоне по азимуту, градусов, Д х Ш х В, м	15	9,0 x 4,9 x 5,0
	30	11,0 x 4,9 x 6,4

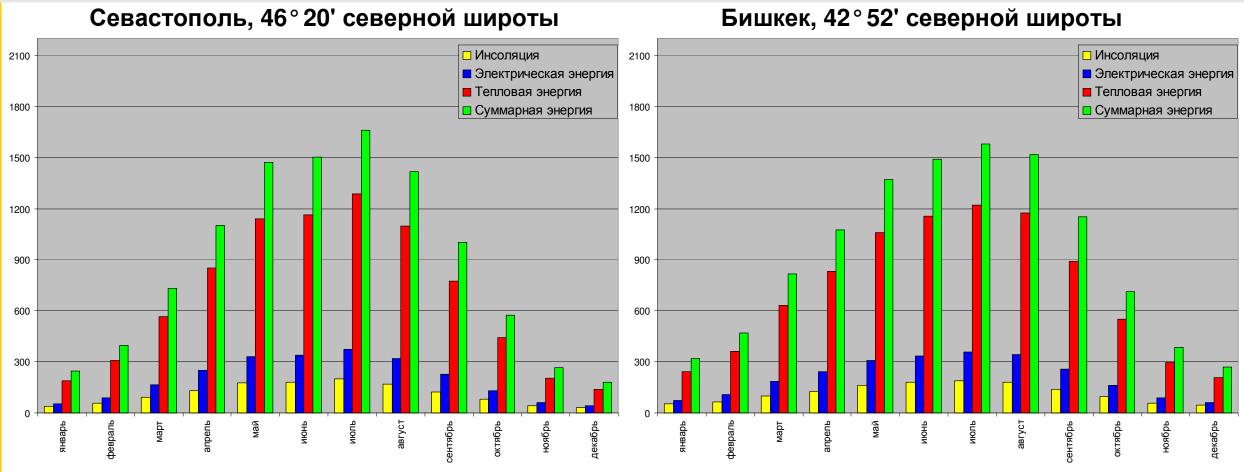

Данные приведены в условиях: инсоляция 1000 Вт/м², Т=25 °С, АМ=1.5

* При КПД солнечного элемента 22,7%

СЭУ имеет систему слежению за положением солнца в полярных координатах. Эта система увеличивает выработку электрической и тепловой энергии на 28 %, что равносильно увеличению на эту величину суммарной пиковой мощности.

Структура пилотной автономной солнечной электротепловой станции CЭTC2/5

- 1 СЭУ2/5-30ТДК
- 2 насос СЭУ2/5-30ТДК: UPML 25-105 130 PWN, GRUNDFOS
- 3 теплообменник СЭУ2/5-30ТДК: CB30-18H, Alfa Laval
- 4 оптимизаторы мощности
- **5 насос UPS25-40К 180, GRUNDFOS**
- 6 насосная группа потребителя
- 7 бак аккумуляторный SOLAR SS 300
- 8 инвертор Sunways Hybrid EVO 5048
- 9 блок аккумуляторов из 32 шт. LT-LFP170B с системой пассивных и активных балансиров



Основные технические характеристики СЭТС2/5

Максимальная электрическая мощность, кВт	5,0	
Пиковая электрическая мощность, 5 сек, кВт		10,0
Расчетная экономия энергии в Рязанском регионе	электрическая	1850,0
за год, кВт*час	тепловая	6260,0
Выходное напряжение, В		230± 10%
Частота выходного напряжения, Гц		50± 1%
Форма сигнала		чистый синус по ГОСТ 13109-97
Накапливаемая энергия АКБ, кВт*ч		18,4
Аккумуляторное напряжение, В	48	
Глубина разряда АКБ не менее, %		80
Объем аккумуляторного бака, л		300
Вид нагрева бака, количество теплообменников, шт.		косвенный нагрев, 1
Материал бака		из нержавеющей стали с теплоизоляцией
Суточные потери энергии бака, не более кВт		0,4
Диапазон рабочих температур, °С	СЭУ2/5ТДК	-40+ 55
	остальные устройства	0+ 45
Срок службы, лет		10

Расчетная выработка энергии установкой СЭУ2/5ТДК

Годичная выработка электроэнергии 230 В, 50 Гц – 2383 кВт х ч Годичная выработка тепловой энергии – 8170 кВт х ч Суммарная выработка – 10553 кВт х ч Установка под углом 30°

Годичная выработка электроэнергии 230 В, 50 Гц – 2524 кВт х ч Годичная выработка тепловой энергии – 8632 кВт х ч Суммарная выработка – 11156 кВт х ч Установка под углом 30°

Среднесуточная выработка воды +50 °C: июль – Севастополь 0.85 м³, Бишкек 0.8 м³; декабрь – Севастополь 0.1 м³, Бишкек 0.13 м³.

Интеллектуальная собственность

- Патент РФ № 2406043 от 12 марта 2009 «Солнечная энергетическая установка с концентратором солнечной энергии из плоских отражающих пластин»
- Патент РФ № 2583317 от 29 января 2015 «Комбинированная концентраторная фотоэлектрическая установка»
- Патент РФ № 2426954 от 17 мая 2010 «Фотоэлектрический солнечный модуль с системой плоских зеркальных концентраторов для управления положением солнечных фотоэлектрических станций»
- Патент США 10,148,224 от 4 декабря 2018 «Combined concentrator photovoltaic installation» (получен по международной заявке PCT/RU2016/000072 от 15.02.2016 г «Комбинированная концентраторная фотоэлектрическая установка»)
- Патент Республики Корея 10-2026003 от 20 августа 2019 «조합형 집광기 광전지 설비» (получен по международной заявке PCT/RU2016/000072 от 15.02.2016 г «Комбинированная концентраторная фотоэлектрическая установка»)
- По международной заявке PCT/RU2016/000072 от 15.02.2016 г «Комбинированная концентраторная фотоэлектрическая установка» предполагается также получить патенты в Европейском патентном ведомстве.

Применение установок

Солнечные когенерационные энергетические установки СЭУ2/5ТДК вырабатывают одновременно электрическую и тепловую энергию. Могут быть использованы для обеспечения горячей водой и электроэнергией таких потребителей как:

- отдельно стоящие объекты в территориальных зонах со слабо развитой инфраструктурой;
- тепличные комплексы и предприятия по обработке сельскохозяйственной продукции;
- предприятия по разведению ценных пород рыбы;
- опреснительные установки с механической компрессией пара.

Установки могут работать в группах от двух до четырех штук.

Эксплуатационные расходы складываются из периодической очистки от пыли и грязи солнечных модулей и зеркал концентратора и замены раз в 4-5 лет охлаждающей жидкости (водный раствор пропиленгликоля).

Удельная стоимость установок (руб./Вт) по суммарной пиковой мощности при серийном производстве значительно ниже обычных солнечных установок.

СРАВНИТЕЛЬНЫЙ РАСЧЕТ ЭКОНОМИЧЕСКОЙ ЭФФЕКТИВНОСТИ СЭТС

Тип солнечной электротепловой станции	СЭУ2/5ТДК	На основе ФСМ	На основе ФСМ и солнечных коллекторов
Вырабатываемая мощность каждой СЭТС, Вт: - 9360 суммарная, в том числе: - 2560 электриче-ской; - 6800 тепловой.	СЭУ2/5ТДК - 1 шт. / €8,000	ФСМ 320 Вт - 37 шт. / €6,160	ФСМ 320 Вт - 9 шт. / €1,500
			Солнечный вакуумный коллектор, 20 трубок - 9 шт. / €9,200
	Бак аккумуляторный 500 л с теплообменником - 1 шт. / €1,500	Бак аккумуляторный 500 л с ТЭН 9 кВт - 1 шт. / €2,600	Бак аккумуляторный 500 л с теплообменником – 1 шт. / €1,500
	Солнечный инвертор 3 кВт - 1 шт. / €500	Солнечный инвертор 12 кВт 3-фазы – 1 шт. / €5,300	Солнечный инвертор 3 кВт – 1 шт. / €500
Расчетная цена, евро	€10,000 / 100 %	€14,060 / 140 %	€12,700 / 127 %

- 1. Цены на установку СЭУ2/5ТДК взяты при объеме производства установок более 100 шт. в год.
- 2. Цены на остальные основные комплектующие взяты из сети Интернет с сайтов продавцов.
- 3. В стоимости ФСМ и солнечных коллекторов учтены затраты на монтажные комплекты (рамы, кабели и др.)
- 4. Расчет проведен по пиковым мощностям устройств, указанных в спецификациях, с учетом потерь, вызванных отсутствием слежения за солнцем ФСМ и солнечных коллекторов.

Контакты

За дополнительной информацией обращайтесь:

1. Александр Худыш, Директор ООО «СОЛЭКС-Р»

Тел.офис: +7 (4912) 38-60-30

Моб.: +7 (910) 641-86-31 E-mail: solex-r@yandex.ru

2. Сергей Алексеев, Зам. Директора по развитию бизнеса и финансам

Моб.:+7 (985) 767-41-57 E-mail: <u>vertobier@gmail.com</u>

Адрес: 390010 Россия, г. Рязань, ул. Октябрьская, дом 61,

Caum: http://solex-r.ru/